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SIGNAL DETECTION FOR SPHERICALLY EXCHANGEABLE (SE)

STOCHASTIC PROCESSES

C. B. Bell

San Diego State University

1. Introduction and Summary

Consider signal detection in the following context. The background

pure noise (PN) is produced by nature's choosing a parameter value and

then generating R time series according to a (stochastic process) law

with that parameter value. This process may be repeated N times. If

there is signal present, what is generated is a (N + S), noise-nlus-

signal,time series. The statistical properties of the latter-type of

time series are different from those of the former.

In the sequel, one will be concerned primarily with the case in

which the parameter chosen is a variance and the time series subsequently

generated is an i.i.d. zero-mean Gaussian time series with that

variance. The variances are chosen by nature according to a positive

cdf, corresponding to which will be a radial distribution. [See

Appendix IIJ.

The signal detection procedures developed below will be valid not

only for tie (conditional) Gaussian model, O(S-S-E), described above,

This work was supported by the Office of Naval Research through Grant No.
N00014-8-C-0208. ,' CodesO i ..... zi.,d/or
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but also for a wider family SI(K-S-E) of pure noise (PN) stochastic

processes. This is because for all S-E (spherically exchangeable)

distributions, the set of observed radii {R.} are sufficient, and

the set of "angles" are independent of the radii and have identical

uniform distributions. [See Section 2.C. and Appendix II].

Five different signal detection models will be explicitly treated.

The treatment of these models will indicate how a variety of related

signal detection problems can be treated.

The paper is divided into ten sections. In Section 2, the basic

S-E data models are given. Section 3 presents the five detection

problems to be considered. Stntistical preliminaries are presented

for historical data and for cross-sectional data in Section 4. Detection

procedures for the five problems are developed in Section 5 through 9.

Open problems and concluding remarks are given in Section 10.

2. Data Structure of the Background Noise

It is assumed throughout that decisions are made on the basis of a

finite number of observations. The actual time series being observed

may be infinite, but one only uses a finite initial segment in the case

of historical data; and a finite number of finite initial segments for

cross-sectional data. In each case, the law, L, of the process

determines the distvibution of the initial segment, and vice versa. The two words

are sometimes used interchangeably.

The data to be considered is of the form Z Z2 Z where

Au ,2 V
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= (,..., Zrk), and the probabilistic structures of interest are

given below.

(2A) Normal Spherical Fxchangeability P(N-S-E)

a . , i.e, the k components

of each Z-vector are i.i.d. N(O,a 2). This is the original spherical

structure of interest. The family of laws of all such time series is

f2(N-S-E).

(2B) Schoenberg (1938) Spherical Exchangeability fl(S-S-E).

.W W are i.i.d. H('), with H(O) = 0, and, conditionally

given W = w , X X are i.i.d. N(O, 1/wr).
r r rl'" rk r

Definition 2.1. H(.) is called the mixing measure.

Here, one can say that each Xrj , has a multivariate distribution

which is a variance-mixture of zero-mean normal random samples. If

H(.) is a one-point (i.e , degenerate) cdf then one has case (2A)

above. [Some relations between O(S-S-E) and Gaussion Markov processes

is given in Appendix II.]. The family of laws of all such time series

is Q(S-S-E).

(2C) Kelker Spherical Exchangeability, O(K-S-E).
"I

Zl' Z2, "'" Z are i.i.d. F(.), where Z - R .V with

(1) R and V" being independent; (2) R J(.), where J(O) = 0;

and (3) Vj= (Vill ... , Vjk ) being uniformly distributed over the
k rm2 k 

hypersphere S! (v: Vi 1),with R I Z and Vs
' s.1 JS "
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Definition 2.2. J(.) is called the radial cdf. Some examles

of radial distributions are given in Anpendix II.

It is immediate that

Theorem 2.1. S(N-S-E) C g(S-S-E) C SI(K-S-E).

Schoenberg (1938) essentially proved that

Theorem 2.2. For infinite time series,

a(S-S-F) = Q(K-S-E).

Fron Lord (1954); Kelker (1970); Bell, Avadhani and Woodroofe (1970);

and Bell (197S, 1978), one has

'Theorem 2.3. Let Z - (Zi k" Zk) have a law L in SI(K-S-E).

Then for 1 m < k-l, m z2] [ Z 2 F(m, k - i).

1: m+l

[This is Fisher's F-distribution. with m and (k - m) degrees

of freedom].

The salient point here is that there are non-Gaussian laws for which

the F-distribution is valid.

These types of PN structures can be best illustrated by the following

examples.

.x!ple 2.1. fl(N-S-E). Let Zr .. ., Zr9 be i.i.d. N(O,5.4);

Zr • (rl , .. Zr(); and ZI , ..., Z0 be i.i.d. ""e Z here are

initial segments of zero-mean i.i d. Gaussian time series.
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Example 2.2. SI(S-S-E). Let Wl, ... , W20 be i.i.d. Ex. (2.5).

Further, given Wr = w., let Zrl,, Zr8 be conditionally i.i.d.

N(O I/Wr ). Then, the unconditional density of Zr is

z 0 (- exp 8 z:1} (2.5) exn {-2.Swldw

- 4
(120)[-415.0 + X z] ; and 1  Z20

1*

i.i.d. F(., ... , -). [See Table II.1 of Appendix II.].

2 8
In this example, each R= js and the radial distribution

1

J(.) satisfies

J(y) p: P{R < Y} = F0 F*(yw2) (2.5) exp {-2.5w} dw,

where F*(.) is the X8-cdf. 8%
[Note: If H(.) were such that PH({5.2}) = 1, then f(z) would be

(10.4,r) exp I~- y IzT and the law would be in P(N-S-F).]
0.4 1

Example 2.3. II(K-S-E).

Let Zr = (Zrl, ... , Z r) and Z1, ... , Z15  be i.i.d. FI(,...., .

with density of the form 5 2 e-  ,-2 s 2 < 2fk 0- d z), 0< zi <

f , ozl,...,zt

0, otherwise
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Then, the radial distribution, J1 () is (U(O,O), i.e., JI(y) 8-1,

0 < y < e. [See Table II.1 of Appendix II.]

If the common density for the Z's is of the form

5 -2 5
f 2 (zl, ... , z5 ) = k* [ z?] exp {-X z,

then the radial distribution satisfies

J2 (y) = 1 - exp {-Xyl, y > 0.

[See Table i.1.].

Statistical detection procedures fmr these types of pure-noise data

involve the observed radii, R1, ... , RN which function as sufficient

statistics; and the "angles" V1, ... , VN which are independent of the

radii. [The V's are not direction-angle vectors as in polar coo-dinates.

The latter are discussed in Appendix 11.1

For detection problems involving specific radial distributions one

uses the {R.1, while for detection problems involving the underlying3

spherical structure, the {V.) are employed.

The signal detection models to be treated in the sequel are given

in the next section.

3. Some Signal Detection Problems

In each of the cases below, the PN (i.e., pure-noise) distribution

or law, L, is described. Data reflecting a different stochastic



-7-

process law would indicate that a signal is being received (in addition

to the pure noise).

3.1. Detection Problems with Historical Data

For these problems, one assumes that the total data available is

Z = {Z : 1 < r < k}. (In terms of the preceding section, one has N = 1).
r - -

The problems are as follows.

PN1 : L({Z}) E Q(K-S-El

This means the background pure noise is itself S-E.

PN2: L({Z - a}) e P(K-S-E) for some (unknown) a.

For this case, one hypothesizes that the pure noise is S-E about

some unknown point a, possibly not zero. If "a" is known, s'lbtraction

leads to PN1  above.

Certain other detection problems can only be handled when the data

is cross-sectional, i.e., the data is of the form below.

Z • where Z = (Z ZZr fix rl' ZAk

3.2. Detection Problems with Cross-Sectional Data.

PN L(Z) = L0 c f(K-S-E)

Here, one gives a specific pure-noise law. Any other stochastic
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behavior of the data indicates signal is present. Z1 , ... Z are

i.i.d. and the associated i.i.d. radii R1, .... Rn  are used in

the decision procedures.

PN4 : L({Z - a}) = L c Q(K-S-E) for some a.

This situation refers to a family of PN-laws indexed by "a",

a nuisance parameter. The decision procedures will involve radii modified

by "estimates" of "a".

The final detection model to be considered is a two-sample model.

The observer observes two independent time series {Xr} and {Yr

and the pure-noise situation entails their stochastic laws being equal.

[See Bell (1964), Model II.]

The data here is

Z -

where

(Xrl ... Xrk), for 1 <r <m
Z Vr (Yrl ""' Yrk) for m + 1 < r < N

PN5: L({X}) = L({Y 1)

The mechanisms for handling these five detection problems (and some related

problems) are given in the section below.
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4. Statistical Preliminaries: Sufficient Statistics and Statistical

Noise.

For developing the methodology it is easier to consider first n(S-S-F),

since the family consists of laws involving conditional Gaussian dis-

tributions. Nuisance parameters, and M-S-S's (minimal si cient

statistics) can be handled in traditional ways. Then sii, . "dngles"

{V.) have the same behavior for SI(N-S-E), Q(S-S-E) an( "K-S-E),

the decision procedures developed can be extended from ,Q(, ..-E) to

fn(K-S-E).

One recalls that the above-mentioned extension is not necessary if

the data vectors are initial segments of infinite S-E time series. For

such cases (See Theorem 2.2) P(S-S-E) = Q(K-S-E).

To these ends, one now develops the mechanisms with Q(S-S-E) in mind.

(4A) Basic Statistics

Let Z be a data matrix with law L' in a family III admitting

a N-S-S (minimal sufficient statistic) S(Z).

Definition 4.1 Let 6(Z) - (S(Z), N(Z)] where (1) 6(.) is

1-1 a.e.; (2) S(Z) and N(Z) are independent. Then (a) 6(.) is

called the BDT (basic data transformation) for n'; and (b) A/(Z)

is called the M-S-N (maximal statistical noise) for fl'.

[One should note that for any given family P', S(Z), N(Z) and

6(.) need not be unique.j.

These entities are used in constructing families of detection statisticc

with certain desirable properties.

I'r
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(4B) Distribution-Free Statistics

Definition 4.2. (1) A statistic T(Z) is NPDF rt R', if

there exists a cdf Q(') such that P{T(Z) < y1L} = Q(y) for all

y and for all L in Q'.

(2) A family of statistics {T*(Z,L): L s 2'} is PDF wrt ',

if there exists a cdf Q*(.) such that

P{T*(Z,L) < yjL} Q*(y) for all y and for all

L in Q'.

A rule of thumb for the sequel is as follows.

4.A. For detection problems in which the PN-distribution involves

a specific law, L0 employ statistics of the form T*(Z,LO) -- *[S(Z),Lo],

This entails using the data only via the M-S-S. Such statistics are

PDF wrt Q'.

4.B. For detection problems which are concerned with the general

structure of the PN-family, employ statistics of the form T(Z) = O(N(Z)).

This entails using the data only through the M-S-N. Such statistics

are NPDF wrt Q,.

Example 4.1. Let L. c SI(S-S-E) and Z = (Zl, .. , Z7). This means

nature has chosen W = w, where W 'u H(.), and given W = w, Z1, ... Z7

are conditionally i.i.d. N(O, 1). R = Z2.l/2 is the M-S-S
f y

for H(-), which determines and is determined by L (See Bell, et al, 1970).
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Z1 Z7

V= ( is M-S-N; and

6(Z) = (R,V), where S(Z) = R and ?'(Z) = V. Now, let

Zi

T (Z) = V1 = -! and T2 (Z, H) = JL(R),

where JL(y) = P{R < yfH} = P{R < yILH}, i.e., JL is the radial cdf.

1 1
Then, TI(.) is NPDF wrt SI(S-S-E) with cdf O(z) = + - arc sin z,

T

IzI< f . T2 (',-) is PDF wrt Q(S-S-E).

Now for Q(K-S-F), R is the M-S-S for the radial distribution.

and V is M-S-N. Therefore, T1  is NPDF wrt P(K-S-F), and

T is PDF wrt Q(K-S-E).
2

[Note: For analyses somewhat different from that of the sequel, one

needs a polar coordinate model, angular distributions, and the relations

between joint densities, radial distributions and characteristic

functions. These are given in Lord (1954); Kelker (1969); Smith (1971);

Bell and Smith (1970), and Ahmad (1975), and in Anpendix II.].

(4C) Extraneous Statistical Noise (E-S-N)

One further statistical tool involves the use of E-S-N. The

essentials of this method have been employed by several author-, e.g

Durbin (1961); and Bell and Doksum (1965).

Definition 4.3. Let Z (p , Z be data governed by law L

in 0l' with M-S-S, S(Z); M-S-N N(Z); and BDT, 8(.). Let
AU
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Y (Yl ---I Yk be independent of Z and be governed by L in

2'. Define Y' to be [Y , ... , Y ] = 6-l[s(Y), N(Z)].

(1) Y is called F-S-N (extaneous statistical noise); and

(2) Y' is called R-S-N (randomized statistical noise).

Paralleling the proofs of the aforementioned authors, one can prove

d
Theorem 4.1. (Randomized Noise Theorem). Y' = Y.

This result illustrates a method of imposing a known fusually tractable).

distribution on a problem in which the cdf of the data is unknown.

It is particularly useful when the distribution of the M-S-N, N(Z),

is relatively intractable.

Example 4.2. Let Z = (Z1 .... , Z2 0 ) be i.i.d. N(O,u*) where

u* > 0 is unknown. Let Y = (Y1 .... Y20 ) be independent of Z

and i.i.d. N(0,1). Then, the BDT is such that 6(Z)Z= [S(Z), N(Z)],

where S(Z)= R , Z ,U and N(Z)= V with V . V is

j RR
uniformly distributed over the hypersphere S*(l) [See Section 2.C].
6-1[S(Y), N(Z)] E- (ZR* ..., Z2 0 ) = (Y', ... ' Y0 ) = Y' where

20 2 R2 '
(R*)2 = Z~Y Then, Y .... Y0 0  are i.i.d. N(O 1).

1 V

(4D) Nuisance Parameters and Kolmogorov-Smirnov Statistics

The next set of statistical tools of this section involve modified

K-S (Kolmozorov-Smirnov)statistics. The original statistic of this

class was (Kolmogorov (1933))
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D(F 0  n) =sup IF n(z) - F 0(WI, where
z

F(Z) Z E C Z - Z ), where z, ,Z are i.i.d.
1 1'1.. n

F O), continuous; and c(u) = 1, if u > 0, 0, if u < 0.

For several of the problems of the sequel, F 0(H, is not known

co;iletely. It is known to be a viember of a family of cdfs-. and

hence, there is a nuisance parameter involved. That is, V0(-) E i

IF(-O):0 E u

For such situations, one uses extensions of the ideas of Lilliefors

(1067, 1969), Srinivas,-n (1971) and Choi (1980).

Definftion 4.3. Let Z=(Z1, ... , PZ n) be i.i.d. F 0 E Pi

fF(.;O): 0 E } where Q11 admits a M-S-S, S(Z), and a MLE,

0, of e. Let F (y) =F(y;B) for all y; and Fn (y) = E(F (y) JS(Z)),

for all y

(1) Dn= sup IF n(y) -F n(y)(, is the Lilliefors-type statistic
yn

for Q1"; and
' 'IV

(2) Dmn = sup IF n(Y) -Fn (y)I is the Srinivasan-type statistic Por
y

Example 4.3. Let Z =(ZZ)beiid N0, .Thn
1' U Z15 ) e i i d ( , ) h n

the M-S-S, 5(Z) = R, and the M-S-N, N(Z) =V, where

2 is 2, PEIR = zip V -i and V (V= .. Then,F ) O(A

A2.

since 0 1 R
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Further F1s(Y) = E{Fn(Y)!} p{Z1 < VIR} = 1 a - for

-R < y < R. The Lilliefors-tyne statistic is, then,

1= supIF 1s(v) - V--)I , and the Srinivasan-fvne
y

statistic is

" 1 1 I(1 _)

D ;up F1 (Y - + - tan (-)II
15 -R<y<R i

Tables for both of these statistics are given in Apnendix I.

Example 4.4. Let Z = (ZI• ... , g9) be i i.d. N(O), where

2 11 (ii 2 9~) 2 1 k,- 2
a = 2). Then S (Z) = (Z, where Sz = (Z - Z) ; and

Z - z 9 - *

NZ) = P-..., ) )=(W, ... , 1 9 ). Here 9

sup 1F9 (y) - 4(Y )l. This is the statistic studied by 1,illefors (1967).
y z

D9 = sup IF9(y)- r9(y) I, where F9H ,

is given by Srinivisan (1971), and is given exltcitly in Example 6.2

of Appendix I.
A. ,

Whit is of importance here is that each of the statistics Dis, Dis

D9  and D9  (of the preceding two examples) is a function of the data

only through the relevant M-S-N. In fact, one ran easily derive

is

(a) D1 5 =sup ' " 1 C (x - V)-t (X /i'
x 1

1 15 1 1 a-lx-

(b) ^6 = sul) [ 1 (x- V.) - tan- l
-l<x<l 1 a
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and 9
(c) D9 = sup o w (x - V.) -

[The derivation for D9  is not so straightforward.]

The final statistical tool of this section involves the use of

Helmert matrices.

(4E) Helmert Matrices, M-S-S's and M-S-N.

Definition 4.4. An (N x N) square matrix HN = {h .1 is called aN iJ

Helmert matrix of order N if

1 for i = N

for l<i<N- 1, 1<j<i-1

-i i-l)
h..

-(i-1) for 1 < i < N - 1, j = i

0 for l<i<N- 1, i l<j <N

It is clear that each H N is orthogonal, and that

Theorem 4.1. If Z = (Zi, ... , ZN) is governed by a law L in
1V dO(K-S-E) and X z Z , then X Z.

The Helmert matrix can in some circumstances be used to construct

the M-S-S and M-S-N.
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Examp le 4.5. (Caugsian Random Sample). Let Z = (Z1 , be

i.i.d. N(V, a2 ) and let Y = (Y , = H where
5'

~o o
vr- vr2

1 1 -2

H 
=

1 1 1 -3 0

1 1 1 1 -4

1 1 1 1 1

Then, Y1  Y2 P Y3, Y4  and YS are independent, with Y. M AI(0, a 2 ) for

1 < j < 4, and Y5 n N(VrS, a 
2). One has, then, that the M-S-S for (,i 2

-' 4

is S(Z) = (YSV R*), where (R*)2 = i y2 and the M-S-N is

N(Z) = (V1 , ... ,V 4 ) where V. = J

One can now treat the first detection nroblem.

S. S-E Background Noise.

PN: L c SI(K-S-E) vs N + S I  I. f SI(K-S-E)

As previously -.entioned, the technique will be to develop the methodology

.or P(S-S-E), and extend its validity to 0(K-S-E).

For fI(S-S-E), one historical "look" yields Z = (ZI, ... , ZN) which
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are i.i d. N(0,C* , given III w*, where W H(-C), with

H(O) =0.

Then, one has

Theorem 5.1. Conditionally given W =*

(a) the M-S-S is S(Z) = R

(b) the M-S-N is ZN)=v - .. )
N~z = =(~ *R

(c) the BDT is S(Z) =(R,V); and

(d) the ?4LE of w* is R
N

From these entities, one derives the decision rule based on the

relevant statistics of Section 4.

Decision Rule 5.1: Decide N + Si iff

DN = sup IF y) 0 > (ac, N).
N N

[Critical values d~a,N), are found in Table A.1 of Arnrendix 1.1

Decision Rule 5.2. Decide N + S iff
1%1

DN = sup NF(y - fl tan- &)]I'> 'd(,N).
y

[Values of d~ct,N) are given in Table A.2 of Appendix 1.]

Decision Rule 5.3. Decide N + S iff

T =[I zj N 2l -r < f~ or > P1.
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[The f'- and f"-valueg are found in a Fisher's F-table for m

and (N - m) degrees of freedom].

Decision Rule 5.4. Decide N + S1 if

N

D1 = sup c (z - Y!) t(z)1 > d(a,N), where Y = (YI9 ... Y )
z 1

is E-S.-N and Y1 = (1 ) is R-S-N as in Section 4C. [The

1'". N

d(a,N)-value are found in a standard one-sample K-S table].

[Note: If the data available is cross-sectional data, one might make the

adaptations in decision rules suggested at the end of Section 6].

All of the decision rules are illustrated in Appendix I. Each

example bears the same number as the decision rule which it illustrates,

e.g., Example 5.4, illustrates Decision Rule 5.4.

It should be noted that each of the decision rules of this section

involves the data solely via the M-S-N, V, and hence is NPDF. Also

V is the M-S-N for SI(S-S-E) as well as for ((K-S-E). Hence, one

has

Theorem 5 2. (1) Each of the statistics DN, TN, T, D1 can be

written in the form p[V], i.e. DN = IV['] ; DN "

T = I3[V] and D' = *4[V]"
(2) Hence, each of these statistics is NPDP wrt Q(K-S-E).

The next detection problem involves two nuisance parameters from the

point of view of Q(S-S E).
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6. Back ground Noise S-E about an unknown Point, a.

PN: L({Z -a}) E fl(K-S-E) for some point a vs

N + S: L({Z- a)) j n(K-S-E) for any Doint a.

From the P(S-S-E) point of view, the historical data is Z =(Z 1,.. ZN)

which are c.i.i.d. N(a, (w*)- ), given W1 w*.

Theorem 6.1. The basic statistics (conditionally) are then

(a) 14-S-5: S(Z) =(X,Sx)

(b) Mv-S-N; N(X) =(U U j ,wee U

Wc BDT: S(Z = 79 Sx U); and

Md MLE of (a, w*): CX, Sx)2

Some important decision rules are then as follows:

Decision Rule 6.1. Decide N + S2 iff

[The Lilliefors (1967) table yields critical values].

Decision Rule 6.2. Decide N + S 2iff

D= sup IF14Cy) - FNY > d~an).
y

(Both F NC() and the critical values are given by Srintlpasan (1970).

See Example 6.2 of Appendix 1.]

Decision Rule 6.3. Decide N + S 2iff
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IN

D, sup -(y ) Y! (y)[ > d(t,n)y 1
X. -

where Y= + Sy{ -), and YI. '" Y is E-S-N.
3 l'S x N

iThe d(a,n) values are from the standard one-sample K-S table].

Some different procedures result from employing Helmert matrices here.

Theorem 6.2. Let Y = (Y1 .... Y) = IT . Then conditionally, given

W =w*, one has

(a) YIp ...' YN are independent;

(b) Y. "n N(0, l/w*) for 1 < j < N- 1;

(c) YN N (arN, 1-V)

(d) (YNPR*) is the M-S=S; where P* = I 2-1/2
L 1 -

Z.
(e) V =-(V1 .... VN_) is the M-S-N, with V.= R; and

(f) ( , N2 is the MLE of (a, w*).
V19 (R*)

The new decision rules are based on an F-ratio and the empirical
N-1

cdf F*_(), where F_ = 1 1" - Y

N_1-'N~~ - j=l

Decision Rule 6.4. Decide N + S2  iff

6v-I = sup lF _l(z) - 0> d(a,N-1).
z

[See Decision Rule 5.1, for critical values].

Decision Rule 6.5. Decide N . S iff
2

Il
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DNi sup IF*(z) - [- + -1 tan (--f)]I > d(a,n - 1).

[See Decision Rule 5.2 for critical values].

Decision Rule 6.6. Decide N + S2  iff

N-1DN_1  c u (z - X!) - 4¢(z)l > d(a,n -I

z

where X XI is E-S-N and X = R**y and (R**)
N-1 R*

N-i 2
X.. [See Decision Rule 5.4 for critical values].

1 J

Decision Rule 6.7. Decide N + S2  iff

m 2 N1 -N 1
= [ Y -I - )> f' or < f"

[See Decision Rule S.3 for critical values].

One should note that in the event that cross-sectional data is available,

some adjustments should be made in the decision rules of this section and

the preceding section. One such adjustment is suggested by the following

development, based on Bell (1975).

Let Zl ,, Z be i.i.d. initial k-segments of time series

with common law L in Q(K-S-E). Then one has

Theorem 6.3. (1) PQ((Z, Z = (Zll ... , Zlk, Z21, ... I Z2 ) is S-E}

0; and (2) (T .""I Tk) is S-E, where r

This result suggests that the decision rules of Section 5 and 6
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can be applied to the mean vectors of cross-sectional data.

Numerical examrles illustrating all of these decision rules are given

in Appendix I.

With so many decision rules being considered, it is natural to ask

which rules are better. More specifically, one might ask how the

decision rules based on the Z's compare with those based on the

Y's of this section. No definitive answers are knmwn at this time.

[See Section 10].

One now turns to detection problems for which cross-sectional data

is necessary and available.

7. Goodness-of-Fit Detection Problems

PN L = L c Q(K-S-E) vs N + S L L3 0 3

It is convenient to write the data in matrix form

As usual one views the problem first from the SI(S-S-E) viewpoint.

This means that Wl, ... , WN  are i.i.d. H(.) with H(O) = 0;

and Zjl, ... 7jk are c.i.i d. NCO, [w!] I), given Wj = w*,

for j = 1, 2, ... , N.
2 2

One now defines R. z j V. = (Vl ... , V whe-e
I m=j1l' 3 Vk
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Z. N
V = 3; and GN(z) JEc (z-R.).

im R. N
3 1

It can be proved that

Theorem 7.1. Conditionally, given 11. w* for 1 < j < N,3 3 - -

(1) the M-S-S is S(Z) = [R(1), ... , R(N)], the ordered radii;

(2) the M-S-N is N(Z) = [R(R 1), ... RORN, V ,  .,N;

and

(3) R1, ... , RN are i.i.d. G0(-), where G0 (z) = P{R 1 < zLlo,

i.e., G C) is tho radial cdf.

A pertinent decision rule is as follows.

Decision Rule 7.1. Decide N + S3 iff

DN = sup IfnN(z) - G0 (z)I > d(a,n).

z

[See Decision Rules 5.4 and 6.6 for :ritical values].

One aspect of the decision rule above worth knowing is the exact

relationship between Lo , the law in (Q(S-S-E) and H0 (.), the

T-ixing measure and cdf of the W's; and f0 ( . , .,.)the joint

density function of Z = (Z, ... , zN). It can be proved that

2

cpf of a Xk-distribution. (2) For fixed N, each of G(')' L0

H(.) and f 0 (., ... .) is determined by any other. [See, e.g.,

Kelker (1971), Bell, et al (1970), Bell (1975).].
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This means that the detection problem PN3 : L = L is equivalent
30

to PN*: G = GO; and, hence, the decision rule is "completely relevant."

A related detection problem is treated in the next section.

8. Goodness-of-Fit With a Nuisance Parameter.

PN4  L({Z - a)) = 0  Q (K-S-E) for some "all (possibly

non- zero)

Vs

N + S4: For each a L({Z r  a)) # 0 .

For the data matrix Z as in Section 7, one forms Y = Z H =

Y NI Y A

For constructing the M-S-S and M-S-N one needs

(a) Yf = Y for I < j < N;
j jk

k- 2
(b) (Rfl 2 Y 2

s=l js

(c) Y* = [Y*(1), ., Y*(N)], the ordered Y*'s.
nj

(d) R* = [R*(l), ... , R*(N)I, the ordered R*'s;

Y.
(e) V" = (V where V =

1i .. ' Vk,k-l is R!

One has then,



-25-

Theorem 8.1. Conditionally, given W. w. for 1 < j < N,

(a) S(Z) = S(Y) = [Y*, R*]; and

(b) N(Z) = N(Y) = [R(Y*) ... , R(Y,); R(R*), ... , R(R*); V1 ... ,

For the decision procedure, one needs the cdf of R*. Call it

G5(') where G*(z) = P{R < z}.

Theorpm 8 2. (a) G6( .) determines and is determ Ad by Lo

(b) R*, ..., are i.i.d. 6,

The decision rule is then

Decision Rule 8.1. Pecide N + S4  iff

N-i
D =sup 1 - P (z - R*) - G*(z) > d (a,N - 1).
N-1 N-1 0Z j=l

This corresponds to a goodness-of-Fit test for the modified radii

{R.}. One could have used any one of a number of other goodness-of-fitJ

statistics, e.g., Cramer-von Mises. However, in this work, one uses con-

sistently the Kolmogorov-Smirnov statistics.

The final detection problem to be considered here is a two-sample

problem.

9. Signal Detection: A Two-sample Problem.

PN5 : L1 =L 2 c s(K-S-E) vs N + S5: L 2
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The data matrix here is

X 11 X lk '

X
mlk

Yll " Ylk

Y ml" Yn1:

where N= m + n.

The relevant statistics are

k 2
I Xis for I < .,< m; and

s=l

R.
i kk y2

Yjs for m +l<j<N.
s=l

One now has

m
Decision Rule 9.1. Decide N + S5 iff X R(R.) > a1  or < a2 '

1

[The table here is that for the Mann Whitney-Wilcoxon Rank-Sum Statistic].

Decipion Rule 9.2. Decide N + S5 iff

m N

p E(z - R.) I E (z - Rj > d"(a,m,n)
z 1 nm+l

[The table here is that of the two sample K-S statistics].



- 27 -

Again a large number of nonparametric (NP) statistics are availahle

for this detection problem. The two chosen above are representative and

have some optimal properties

The preceding developments lead to some interesting observations and

speculations.

10. Concluding Remarks and Open Problems.

(A) Parametric and NP Statistics

Signal detection problems related to SE time series utilize

parametric as well as NP techniques. The sphericity property allows one

to employ the F-statistic and othe- classical statistics; while the

families of rndial distributions are NP in character. Hence, one

could have used a variety of goodness-of-fit and NP statistics. The

relative utility of these other statistics is at this time an onen

question. [See (B) below].

(B) FDR and Power. The procedures given in the text are reasonable

and commonly used. However very little precise information is available

on FDR and power. A series of definitive studies, evaluating FDR for

reasonable (N + S)-distributions, is needed. Some preliminary Monte

Carlo results have been relatively costly and less than definitive. As

of this writing, it is difficult to say which of the available procedures

is better than which others. In particular, one asks how do the pro-

cedures based on the Z's compare with those based on the Y's in

Section 6.
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(C) Polynomial Drift. Techniques were presented above for time

series S-E about 0 and about non-zero points "a". Of some

interest would be background noise which is SE about some polynomial

curve. This would be related to polynomial regression with SE

(rather than Gaussian) errors and should be also related to some

recent robustness studies.

(D) Guassian Markov Processes. It is developed in Appendix II,

that S-F time series can be considerec' "imbedded" in certain mixtures

of some Gaussian Markov processes. It is an onen proble.n as to how

the very rich literature on Gaussian Markov processes can be brotght

to bear on signal detection problems.

(E) Polar Coordinates. Some explicit detail about the polar

coordinate aspects of S-E times series is given in Appendix II. The

current interest in geometric probability may give some new insights

into developing signal detection procedures different from the -nes

presented in this paper.
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APPENDIX I

1. Tables

2. Data Sets

3. Numerical Examples

(The tables were computeJ by S. M. Lee. He, A. Mason, and G. Muse did

the computations for the numerical examples.)
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TABLES

A.l. Modified Lilliefors Table

A.2. Modified Srinivasan Table

(See Section 5).
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TABLE A.1. Critical Points 'or Dn (See Decision Rule 5.1).

[Dn  is a modified Lilliefor -tyve K-S statistics].

Sample
Size .01 .0 .10 .15 .20 .25 30

2 0.8369 0.8202 0.7968 0.7697 0.7393 0.7062 0.6700
3 0.7975 0 7217 0.6566 0.5992 0.5507 0 5294 0.5107
4 0.7335 0.6210 0.5650 0.5289 0.4985 0.4701 0.4426
5 0.6603 0.5665 0.5074 n.4695 0.4403 0.4192 n.3969
6 0.6071 0.5140 0.4639 0.4289 0.4002 0.3790 0.3615
7 0.5663 0.4-66 0.4288 0.39 0 0.3752 0.3534 0.3355
8 0.5337 0.4497 0.4048 0 3739 0.3511 0.3322 0.3159
9 0.5048 0.4250 0.3823 0 3530 0.3318 0.3137 0.2981

10 0.4772 0.4005 0.3609 0.3351 0.3145 0.2978 0.2825
11 0.4659 0.3866 0.3458 0.3201 0.299!' 0.2836 0.2695
12 0.4438 0.3"09 0.3318 0.3069 0.2886 0.2725 0.2586
13 0.4278 0.3577 0 3198 0.2964 0.2774 0.2622 0.2491
14 0.4095 0.3411 0.3067 0.2838 0.2656 0.2513 0.2387
15 0.3973 0.3310 0.2974 0 2753 0.2589 0.2450 0.2328
16 0.3872 0.3215 0.2875 0.2674 0.2513 0.2374 0.2261
17 0.3769 0.3130 0.2819 0 2599 0.2439 0.2301 0 2186
18 0.3690 0.3024 0.2712 0.2511 0.2356 0.2226 0.2115
19 0.3567 0.2966 0.2655 0.2455 0.2311 0.2183 0.2078
20 0 3479 0.2896 0.2598 0.2408 0.2260 0.2137 0.2029
21 0.3369 0.2820 0.2521 0 2333 0.2193 0.2075 0.1973
22 0.3344 0.2781 0.2473 0.2284 0.2141 0.2023 0.1927
23 0.3189 0.2704 0.2415 0.2233 0 20P7 0.1986 0.1888
24 0 3172 0.2627 0.2361 0.2183 0.2048 0.1938 0.1847
25 0.3082 0 2558 0.2306 0.2139 0.2015 0.1906 0.1809
26 0.3054 0.2551 0.2266 0 2095 0.1968 0.1863 0.1774
27 0.3016 0.2500 0.2244 0.2076 0.1943 0.1838 0.1750
28 0.2903 0.2444 0.2189 0.2031 0.1906 0.1803 0.1718
29 0.2897 0.2416 0.2169 0.2001 0 1879 0.1782 0.1689
30 0.2843 0.2356 0.2121 0.1975 0. 853 0.1748 0.1662

[Table computed by S. 11. Lee, 20,000 repititions].
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Data Sets

(The data sets herein were generated as described in Section 1, and in

Section 2.C. The actual laws of the underlying stochastic processes are

in Q(S-S-E).
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Data Set B.

(Ten independent random samples of size 6 from an Exp (0.5) population)

x x 2j x 3j x 4j x 5j x 6-Xi X2j X3j X4j XSj X6j X

1.0784 1.5952 9.2919 1.7778 1.1270 0.2590 2.5215 3.3584

0.5370 0.9007 0.1444 1.5916 1.6744 1.5387 1.0644 0.6366

0.5882 1.6478 2.9246 4.0697 0.3525 2.1723 1.9591 1.4134

1.3147 2.9117 4.0288 1.0712 0.2252 1.6121 1.8606 1.3757

4.3221 2.0311 1.2146 0.1451 5.2428 1.8572 2.4688 1.9322

0.5331 7.4930 2.1394 9.8953 1.4496 0.4987 3.6681 4.0134

5.5134 1.8511 2.5914 3.7042 2.4613 0.8480 2.8282 1.6151

0.5144 2.6477 7.3539 1.5439 1.2565 1.5495 2.4776 2.4853

1.1833 0.3628 1.3510 0.2951 7.6608 5.6672 2.7473 3.1286

0.5530 0.2034 1.2320 0.7505 0.7187 5.2019 1.4432 1.8711
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Numerical Examples for Section 5.

PNI: L c Q(K-S-E) vs. N + Si: L 4 f(K-S-E)

5.1 Modified Lilliefors

5.2 Modified Srinivasan

5.3. F-test

5.4 E-S-N

The examples here are numbered corresponding to the decision rules of

the text.
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Example 5.1.

PN: L e f(K-S-E) vs. N + Si: Le S(K-S-E)

Data: 1 2.38000E-2
2 9.20000E-2

3 -1.73000E-2
4 -8.65000E-2
5 1.07300E-1
6 1.73000E-2
7 -2.77500E-1
8 5.77000E-2
9 -1.36800E-.

10 2.031OOE-1
11 -1.61000E-2
12 5.77000E-2
13 5.54000E-2
14 7.24000E-2
15 3.72000E-2
16 -1.01300E-1
17 -6.78000E-2
18 1.25300E-1
19 1.06800E-1

Decide N +S 1  iff

A su I>Sa,

DN -su IFN(y) - > d(~N)

From Table A.1, one finds d(.05,19) - 0.2966. The obtained statistic

value is BA1 - 0-195. Therefore, one decides PN.
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Example 5.2.

PN: LE Q(K-S-E) vs. N + Si: L 4(K-S-E)

Data: 1 1.76000E2
2 1.88000E2
3 7.11000E2
4 7.32000E2
5 6.10000E2
6 1.00800E3
7 1.02400E3
8 1.19500E3
9 7.36000E2

10 1.19600E3

11 1.18100E3
12 1.04400E3

13 1.24500E3
14 1.50600E3
15 1.57600E3
16 1.34600E3
17 1.10300E3
18 1.29600E3
19 9.81000E2
20 1.44000E3

Decide N + S1  iff

u- p IY - 11) t- c)J I > d(a,N)

From Table A.2, one finds d(.05,20) - 0.4251. The obtained statistic

value is D20 - 0.512. Therefore, decide N + S.

20-
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Example 5.3.

PN1: L E gl(K-S-E) vs. N + S: L (-SE

Data:

Z = [6.9707, 6.987P, 7.0979, 6.9961 7.0322, 6.9174, 6.9523,

7.0079, 7.0597, 7.0263]

F-statistic

S 2Sz.
T 1 I 246.202 1.007

10 244.496

6

Decide N + S1 iff T > F(5 ,5,.975) = 7.1464

or T < F(5 5 ,.025) = .1399

Therefore,

decide PN.

Example 5.4.

PN1 : L C fl(K-S-E) vs. N S 1 L S )(K-S.E)

Data:

Z = [6.971, 6.988, 7.098, 6.996, 7.032, 6.917, 6.952,

7.008, 7.060, 7.026]
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E-S-N:

Generate Y = (YI, ... , YI) i.i.d. t independent of Z.

Y = [-0.511, -0.884, 0.307, -1.169, 1.146, -1.107, 0.140,

-0.168, 1.698, 0.143]

10 2 1/2
RZ = ( [ Z.) = 22.152

S 1

10 2 1/2 = 2.827

R-S-N: V = - Z = (.128)Z

= [0.890, 0.894, 0.909, 0.895, 0.900, 0.88S, 0.890,

0.897, 0.904, 0.899]

Test statistic:

10

1

a mnax {xax[(z) k- I k O(z)
k 10
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0, (V(k) k 1
k1-

kV (k) IP V (k) k 1O OCV~k))

1 0.885 .8120 .8120 -

2 0.890 .8133 .7133 -

3 0.890 .8133 .6133 -

4 0.894 .8143 .5143 -
5 0.895 .8146 .4146 -
6 0.897 .8151 .3151 -
7 0.899 .8156 .2156 -
8 0.900 .8159 .1159 -
9 0.904 .8170 .0170 .0830

10 0.909 .8183 - .1817

D = .8120 > .410 (a = .05)

Decide N + S

Numerical Examples for Section 6.

PN L({Z - a)) cS (K-S-E) vs. N + S L({Z - a)) 4 f(K-S-E)

6.1 Lilliefors

6.2 Srinivasan

6.3 E-S-N

6.4 Helmert -> modified Lilliefors

6.5 Helmert - modified Srinivasan

6.6 Helmert - E-S-N

6.7 Helmert - F-Test
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Example 6.1.

PN2: LC{z - a})E f(K-S-E) for some a

vs. N + S2 : L({Z - a}) 4 SI(K-S-E) for any a

Data Set D was used:

1st case: historical data ("first look')

2nd case: cross-sectional data (means)

Lilliefors (1967)

X. (X. -(X )2

1. Compute N = and SX N -I

2. Determine order statistics X(l), X(2), ... , X(n).

3. Compute Lilliefors statisticA
D N -sup IFN(z) - zsXI

z x

a=max {max [ S(ZX OO-l k$ . )}
k X x

a -

4. Decide N + S iff DR > d(aN) where dCt,N) is obtained from

Lilliefors' table.
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Case 1: Lilliefors method (historical data)

Data Set D (1st "look")

XI = 6.3290 S2  1.7008 1.3041

(Z-X)
Z~k W 8 (w) *(w)-- -- 6k - ¢Cw)

k Z(k) W= x

1 3.4160 -2.2337 .0127 .0127 .1540
2 6.8105 .3692 .6440 .4773 -
3 6.8522 .4012 .6600 .3267 -

4 6.9583 .4826 .6855 .1855 -
5 6.9661 .4885 .6870 .0203 .1463
6 6.9707 .4921 .6895 - .3105

D = 4773 > .319 (c = .05) Decide N + S.
6

Case 2: Lilliefors method (cross-sectional data)

Data Set D

2p -  6.9006 S=X .2349 S-X .4846

DN  sup IFN(z) -( S
z x

=max {max [,(ZO) lo- 1 W
k x x
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Z-)k-1 k(w (w)
k Z(k) SX t(w) 10_10

1 6.1475 -1.5664 .0585 .0585 .0415
2 6.3290 -1.1919 .1165 .0165 .0835
3 6.4858 - .8684 .3070 .1070 -
4 6.7568 - .3088 .3790 .0790 .0210
5 6.7813 - .2586 .3980 - .1020
6 6.8378 - .1415 .4435 - .1565
7 7.2096 - .6252 .7340 .1340 -

8 7.3357 .8120 .1120 -

9 7.5368 1.3005 .9035 .1035 -
10 7.6456 1.5249 .9365 .0365 .0635

DIO = .1565 < .258 (a = .05) Decide PN

Example 6.2.

Srinivasan (1970)

The Srinivasan statistic is

= sup IFN(z) - Folz)I
z

where

FN(z) is the empirical distribution function

Fo(z) = E[FN(z)II-s-S]; and the

M-S-S is S (X) - (- 2.Hec

2 fu 2F o~u;Ij,o ) f(XllI, S x )dx,
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where 1

2 1/2 r([n- 1]) 1 X - 1  n-4/2
f(X ,Sx - 1 - 2]) s i--

fV(u)
1'o(U;, 2) = 1 - g(y)dy;

f0

r(n-2) yn/ 2-2  (1 - y.n/2-2.

g~)={r(l[n_2])}2

and
V(U- u ( n 1/2

v(u) = -{1 + X-.(n)'}

x

Computation of Srinivasan statistic for n = 10

Given a set of historical data: X1, X2, ... , Xlo one wishes to test

PN2: L({X - a}) E Q(K-S-E)

(i.e., S-E about some unknown a).

1. Compute order statistics X(1), X(2), ... , X(1O)

2. Compute X and SX.
1 + (n__ 1/2-

3. Evaluate V(u)= {1 + (L) u)}

with u = X(j) and n = 10 for j = 1, ... , 10

i.e., VIj)+ " X X)] for j = 1, ... , 10

4. Evaluate
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2=14FoIX(j);P,o 1 1- {V[X()]} [35 - 84 V[X(j)]

2 3+ 70 {V[X(j)]} - 2ofV[X(j)]) I

S. D =max -;[~);Jn 1<j<10 FoX(j);1J, 2 ]i

2 X-X(j)
j X. X(j) X-X (Xj- X)2  Sx V[X)]

1 -.4979 -.4979 -.2504 .0627 1.2743 1.1716
2 -.4105 -.4788 -.1630 .0266 1.1771 1.1204
3 -.0182 -.4105 .2293 .0526 .8295 .9372
4 .0388 -.3687 .2863 .0820 .6168 .8251
5 -.2179 -.3322 .0296 .0009 .4310 .7272
6 -.2353 -.2353 .0122 .0001 -.0621 .4673
7 .0454 -.2179 .2929 .0858 -.1506 .4206
8 -.4788 -.0182 -.2313 .0535 -1.1669 -.1150
9 -.3322 .0388 -.0847 .0072 -1.4570 -.2679
10 -.3687 .0454 -.1212 .0147 -1.4906 -.2856

-. 2475 s 2  .0386

SX = .1965
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[v (X(j)] 
4 V(X(j) I [ oV(X(j)]]
4  [XM) FX.M-]

_ 0% 10 0

1 1.3726 1.6082 1.8842 .0511 .0489
2 1.2553 1.4064 1.5758 .0082 .1918
3 .8783 .8232 .7715 .0031 .2969
4 .6808 .5617 .4635 .0203 .3797
5 .5288 .3846 .2797 .0940 .4060
6 .2184 .1020 .0477 .5709 .0291
7 .1769 .0744 .0313 .6693 .0307
8 .0132 -.0015 .0002 .9909 -
9 .0718 -.0192 .0052 .6728 .2272

10 .0816 -.0233 .0067 .5634 .4366

Decide N + S iff

D 1 > d(.05,10)=0.24. DI .4366. Decide N + S.

Example 6.3.

E-S-N [Durbin (1961)]. The procedure is as follows.

1. Compute X and S .

2. Generate, by standard methods,

E-S-N: YI' Y2. Y idd 0 independent of X

SSy
3. let Y' y+ (X- X)J Sx x

d4 . If X 1 , X . . , N (K-S-E) then (Y 'Y . .. . Y ) = (Y I 'Y2, . ... Y )

i.e., , ... , Y' are i.i.d. D.

5. Determine order statistics Y'(1), Y'(2), ..., Y'(N)
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6. Use Kolmogorov-Smirnov test:

DN = sup IFN(z) - Fo(Z)I
z

= max [max {[[Y'(k)] - k- k 4 $[Y'(k)]}]
k n n

7. Decide N + S iff DN > d(a,N) where d(a,N) is value from

Kolmogorov-Smirnov tables.

On applying the above procedure to Data Set D, one finds:

P= 6.9066; S- = .2349; SX = .4846;

M-S-N: N(X) [-1.5664, -1.1919, -.8684, -.3088, -.2586, -.1415

.6252, .8854, 1.3005, 1.5249];

E-S-N: Y = [.807, -1.306, .875, -.081, -1.056, 1.241, 1.126, -.397,

.244, 1.207]; and

2
= - .266 S, = .8019 SY - .8955

Y' = .266 + (.8955)(-1.5664) = -1.1367
1

Y = -.8013 Y' = -.5117 = -.010523 Y4=-10

= .0344 = .1393 = .8259

Yi = 1.0589 Y; = 1.4306 Y:= 1.6315.
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,he computations for the K-S test are as given below:

k-l k ¢Y k
k y'(k) D[y'(k)] 4[Y'(k)]- k- kO -

1 -1.1367 .1280 .1280
2 - .8013 .2080 .1080

3 - .5117 .3040 .1040
4 - .0105 .4940 .1940

5 .0344 .5135 .1135
6 .1393 .5550 .0550 .0450
7 .8259 .7955 .1955 -

8 1.0589 .8550 .1550
9 1.4306 .9238 .1238

10 1.6315 .9487 .0487 .0513

DO= .1955 < .410 (a = .05) Decide PN.
10

Examples 6.4 - 6.7

PN2: L({Z - a})E S(K-S-E) for some a.
2

VS.

N + S2: L({z - a})4 Q(K-S-E) for any a.

For these four examples one multiplies the original data vector by the

Helmert matrix of appropriate dimension and reverts to the methods of

Examples 5.1- 5.4.
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Original data: Z The Data Vector, after being multiplied

by the Helmert Matrix size 19 is: Y
1 5.33300E-1 '

2 -7.5lOOOE-2
3 6.25200E-l 4.30204E-1
4 9.73000E-2 -3.23414E-1
5 -4.60OE-1 2.28486E-1
6 -1.43000E-2 6.7S717E-l
7 -2.29600E-l 1.44SB0E-l
8 -4.33000E-2 3.21522E-l
9 -1.74400E-1 1.04178E-1

10 -3.57700E-l 2.15479E-1
11 1.70900E-l 3.66623E-1
12 -4.59800E-l -1.72377E-1
13 6.S41OOE-1 4.46492E-1
14 5.S3200E-1 -6.59488E-1
15 1.18600E-1 -5.13337E-l
16 -3.62000E-l -S.80276E-2
17 4.6S700E-1 4.11OS9E-1
18 -4.S6600E-l -4.16864E-1
19 5.39000E-1 5.03291E-l

-4. 92980E-1
2. 57909E-1

Example 6.4.

Decide N + S if

DN-1 = u N- l''- (--- > a(a,N - 1)
z

From Table A.1, one finds d(.OS, 18) =0.3024. The calculated value .ri

the statistic is

D 18 0.214

Therefore, decide PN.
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Example 6.5.

Decide N + S iff

' 1 1 z_
DN_1 = sup IF Z + [+ - - tan >-]l d(a,N -1)

z

From Table A.2, one finds d(.05, 18) = 0.4233. The calculated value of

the statistic is D18 = 0.373. Therefore, decide PN.

Example 6.6.

1. Let Y = [Y'1 . I ZT where Z = Z ,I is^. Le - Y .., 19 -z  19  19Z1 ..

the original data.

2. Generate X = [i, ... , X18] i.i.d. 0 independent of the original

data.
18 18

3. Compute R* =~ Y)" and R** - ( X.) 1 1
1 1

4. Generate X.-rxI X] where X' - Y.

S. Decide N + S iff

18
Dig = sup 1 1- 1 (Z - X!) - (z)I > d(.05, 18)

18 181z1

The calculations yield:

E-S-N: X = [.089, .233, .912, -1.10, -.515, 1.58, -1.41, -.245, 2.24,

-.149, 1.639, -.798, -1.888, .344, .647, .718, -.125]

18 2 1/ = 4.467
18

S18 y2 1/2 1.79

1

I ~~R -2-_1 1.7,93mlP '?,,
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R-S-N: X' [1.071, -.805, .568, 1.684, .361, .802, .259, .536, .914,

-.428, 1.111, -1.642, -1.278, -.144, 1.024, -1.039,

1.253, 1.228]

k-1 k k-i
k X'(k) *[X'(k)] k/18 1-8 1- [xCk)] isX'Ck)1 -

1 -1.642 .045 .056 0 .011 .045
2 -1.278 .101 .111 .056 .010 .045
3 -1.039 .149 .167 .111 .018 .048
4 - .805 .210 .222 .167 .012 .043
5 - .428 .334 .278 .222 - .112
6 - .144 .443 .333 .278 - .165
7 .259 .602 .389 .333 - .269
8 .361 .641 .444 .389 - .252
9 .536 .704 .500 .444 - .260

10 .568 .715 .556 .500 - .215
11 .802 .789 .611 .556 - .233
12 .914 .820 .667 .611 - .209
13 1.024 .847 .722 .667 - .180
14 1.071 .858 .778 .722 - .136
15 1.111 .867 .833 .778 - .089
16 1.228 .890 .889 .833 - .057
17 1.253 .895 .944 .889 .049 .006
18 1.684 .954 1 .944 .046 .010

Decide N + S iff D > d(.05, 18) - .309. D' u .269.

Decide PN.

' I IIIl IIi ... ., .. . . . . .. .. - , , [
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Example 6.7.

Decide N + S iff

S2

N1 j N m - 1 F
2 1- 2 m (N-m-l,m, l-aL/2)

Sy.
m+l J

or < F(N-mlm,a/2)

Critical values are: (N = 19, m = 9, a = .05)

F(9,9,.025) = 0.25

F (9,9.975) -4.03

The obtained statistic value is

T = .96 = 0.45
2.11

Therefore, decide PN.

Nu'erical Exa Mles for Section 7.

PN3 : L = L0 c f(K-S-E) vs. N + S3 L 0

Example 7.1.

Data: Data Set A (cross-sectional)
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10
1. Compute S 2 = ! z jr for 1 < j < 6S r=l jr

S2 1 6186 S2 2.8889 52 =1.41381 = 2 = 3

2 3.0323 1.7226 2 3.1484
54 5 6

2. Decide N + S3 iff

O6 = sup IG((z) - G0 (z)i > d(.05, 6)

whr Grol- 2 0 (r S (k)
whee G(Z) =P[s 1 < z I I. = F 2 (wz )dJ0  

2(k

Here w = I/ 2  and J= Exp(5).

Kolmogorov-Smirnov test on 2S.

2 S2 2 (s 52 k-I k S2 (k)

k S2(k) S2(k)] [ z ]_6 2
___I"_ (k) 2+S_(k)

1 1.4138 .0689 .0689 .0978
2 1.6186 .0902 - .2431

3 1.7226 .1014 - .3986
4 2.8889 .2262 - .4405
5 3.0323 .2405 - .5928
6 3.1484 .2518 - .7482

D6 = .7482 > D(6,.95) = .521

Decide N + S.
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Numerical Examples for Section 8.

PN4 : L({Zra ) =L E Q(K-S-E) for some a vs.

W + $4: L{Zr-a) Lo  for any a

ExMple 8.1.

Data: First five columns of data Set A

zis

z z6
Z61' .,Z65

1. Form new matrix

y y 1

Y 61' "''(Y65

1.388 -. 684439 -1.323319 -1.039538 - .684434-.119990 1.347044 .897S89 - .352879 2.121287
.831179 -1.372096 .839S72 - .128918 - .698959

1.234207 - .559795 .723030 1.825137 4.079463
1.060587 1.932456 - .786232 - .464495 2.376244
-2.021135 -1.815677 - .743263 - .045593 .638156

4

2. Compute S? - for 1 j<6
3 r=l jr

2 4.377377 2 2.7S9115 2S1 =$ S3 -3.295005

2 =.690535 2 5.693147 S2 , 7.936188S4 =S = 6 -
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Decide N + S4  iff

D sup G66(z) G0 (z)l > d(.05, 6)

G0 (Z) = P z LO = S2 (k)
1 + S (k)

[The mixing measure here is Exp (5).]

Kolmogorov-Smirnov Test on S2

k61 k [_S 2
_

k )
__

S 2(k) ] S2(k) ]  k-i - S 2_(k) 5

S2_k)_[1+$2____ 1+S (k) 6 6 1+S2(k)

1 2.759115 .213020 .213020 -
2 3.295005 .265743 .099076 .067590
3 4.377377 .357452 .024119 .142548
4 5.690535 .445104 - .221563
5 5.693147 .445256 .388077
6 7.936188 .552457 .447543

D6 = .448 < d(.O5, 6) = .521

Decide PN

Numerical Example for Section 9.

PNs: L1 = t2 £ (K-S-E) vs. N + S5: L1 0 L2

9.1 Mann-Whitney-Wilcoxon Rank Sum Test

9.2 K-S two-sample test

Data sets B, C (cross-sectional data)
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9.1. Mann-Whitney-Wilcoxon Rank Sum Test

Given two sets of cross-sectional data:

x1.. ,I o I ... Iy
C1= ( ::~ ~o) C2= = *~~

X61' ' 6,10 Y61' '' Y6,10

Compute radii for each "look":

j 11 = 2 )
1 21< j <m; R = r ( Y /)m * 1 < j < N,

where m= n =6 and N =12.

RI  7.4067 (2) R7 = 11.3978 (8)

R2 = 9.2428 (S) R8 = 11.9761 (4)

R3 = 13.4661 (12) R9 . 11.1978 (7)

R4 = 11.7515 (10) Rio= 7.4447 (3)

R = 10.0338 (6) R = 6.3221 (1)
S 11

R6 = 8.7033 (4) R1 f 11.6063 (9)6 12

The Mann-Whitney U statistic is computed as follows: (m = n = 6)

UI = mn + m ~l - R(R)

1

fi (6)(6) + (6)(7) 0- (6)6) + (2 + S + 12 + 10 + 6 + 4)
1

= 36 + 21 - 39 = 18

(Note: This statistic is equivalent to the statistic in Decision

Rule 9.1].
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N

u mn + n(n+l) R(R2m+l J

57 - (8 + 11 + 7 + 3 + 1 + 9) =57 -39 =18

Decide N + S iff min{U1i 2 < U6,6,.025 =

since min {U,0 =18
1'2

decide PN

9.2. Kolmogorov-Smirnov 2-sample test

Here m = n = 60, and the decision rule is:

Decide N + S iff D > n .248.
(mn) 2 ,fn,.05

D(60,60) = 1667. Decide PN.

(60,60)
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APPENDIX 11

(A) Gaussian Markov Processes

(B) Polar Coordinates

(C) Radial Distributions (Table 1.)
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(A) Gaussian Markov Processes and SE Time Series

Consider the following two Gaussian Markov Processes.

(A) WL (Wiener-Levy) {W(t): t > 01, where W(t) = P(t) + V- / 2W*(t)

with

(i) {W*(t): t > 01 being a Gaussian Process, satisfying

(ii W*(0) = 0; and

(iii) E[W*(t)] - 0;

(iv) Cov[W*(s), W*(t)] = min(s,t).

(B) O-U (Ornstein-Uhlenbeck) {U(t): t > 01, where

V(t) = 11(t) + v-1/ 2u*(t), with

(i) {U*(t): t > 0} being a Gaussian Process, satisfying

(ii) U*(O) = 0;

(iii) E[U*(t)] 0 0; and Cov[U*(s), U*(t)] = exp {-yIs-ti}

for some y > 0.

When V is a positive constant, the processes (A) and (B) above

are the Wiener-Levy and Ornstern-Uhlenbeck processes, respectively.

Now let V be a positive random variable, i.e., one mixes the

processes and form the random variables

a. W = W(nA);n

b. Y NW - W
n n n-l1

c. V = V(nA), and
n

d. n =V n - BVn, where A > 0.
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One can easily verify for the (mixed) W-L processes proposition

(1) The time series {Y n > 1) is S-E iff p(t) 0.n

(2) The time series {Y1 - 1j, Y2 Y 3 ... ,1 is S-E iff 1(t) 1 1.

(3) The time series {Y - BA: n > 1) is S-F iff p(t) = Bt + a,n

for some a.

For the (mixed) 0-U processes it is valid that

Theorem I1.1

(1) {X: n > 1} is S-E iff B = exp{-yA}

(2) {V : n > 1} is approximately S-E iff yA is sufficientlyn

large. [When yA > 10, one has approximately white noise.]

(B) Polar Coordinates, Direction Angles and Radial Distributions.

For an S-E time series, it is sometimes useful to formulate

problems and solutions in polar coordinates. For an initial segment

of length q, one has

X1 = R sin 01

X2 = R cos 01 sin 02

Xq 1  = R cos 01 cos a2 - cos 0q 2  cos Oq 1

Xq = R cos 01 cos 2 ... cos 0q 2 cos 0 q-

where leJ} <1 for j = 1, 2, ... , q - 2; and l0ll < Tr; and

S 2

R12  X2.
1 J

As previously implied (Section 2.C), R and 0 = (1, 2 ... ,1

are independent. Further, one can prove (e.g., Smith (1969))
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Theorem 11.2. The direction angles 6 = ( ... have

% 1 -q/2 q-

joint density f(O) = - PC2) [cos ]9-2 [cos e2 ]q-3 ... [cos 0 q2

The radial distributions, joint densities and characteristic functions

(See Table A.II.1) are related by

Theorem 11.3. For an initial q-segment, X = (Xl, ..., X) of

% q

an S-E time series, (i) the characteristic function is of the form

Q = ( t ) (ii) the density (if it exists) has the form
1

f(x) - C (I X2), and (iii) R has (radial) density 2(r) =

2Cq Trq/2 [F(2a)]-I1 r q-1 0(r 2)q

Several of the more important densities, f(.); characteristic

functions, ( and radial distributions g(.) are given in Table I1.1

below.

These are given for initial segments of length "q", in general,

and for q = 1, 2, and 3. Further a scale parameter "a" is

included in all rows except the first row. The characteristic function

is intractable in the uniform cases and has been omitted.
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